49 research outputs found

    Electronic transport in polycrystalline graphene

    Full text link
    Most materials in available macroscopic quantities are polycrystalline. Graphene, a recently discovered two-dimensional form of carbon with strong potential for replacing silicon in future electronics, is no exception. There is growing evidence of the polycrystalline nature of graphene samples obtained using various techniques. Grain boundaries, intrinsic topological defects of polycrystalline materials, are expected to dramatically alter the electronic transport in graphene. Here, we develop a theory of charge carrier transmission through grain boundaries composed of a periodic array of dislocations in graphene based on the momentum conservation principle. Depending on the grain boundary structure we find two distinct transport behaviours - either high transparency, or perfect reflection of charge carriers over remarkably large energy ranges. First-principles quantum transport calculations are used to verify and further investigate this striking behaviour. Our study sheds light on the transport properties of large-area graphene samples. Furthermore, purposeful engineering of periodic grain boundaries with tunable transport gaps would allow for controlling charge currents without the need of introducing bulk band gaps in otherwise semimetallic graphene. The proposed approach can be regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    Electrically driven thermal light emission from individual single-walled carbon nanotubes

    Full text link
    Light emission from nanostructures exhibits rich quantum effects and has broad applications. Single-walled carbon nanotubes (SWNTs) are one-dimensional (1D) metals or semiconductors, in which large number of electronic states in a narrow range of energies, known as van Hove singularities, can lead to strong spectral transitions. Photoluminescence and electroluminescence involving interband transitions and excitons have been observed in semiconducting SWNTs, but are not expected in metallic tubes due to non-radiative relaxations. Here, we show that in the negative differential conductance regime, a suspended quasi-metallic SWNT (QM-SWNT) emits light due to joule-heating, displaying strong peaks in the visible and infrared corresponding to interband transitions. This is a result of thermal light emission in 1D, in stark contrast with featureless blackbody-like emission observed in large bundles of SWNTs or multi-walled nanotubes. This allows for probing of the electronic temperature and non-equilibrium hot optical phonons in joule-heated QM-SWNTs

    Conducting linear chains of sulphur inside carbon nanotubes

    Get PDF
    Despite extensive research for more than 200 years, the experimental isolation of monatomic sulphur chains, which are believed to exhibit a conducting character, has eluded scientists. Here we report the synthesis of a previously unobserved composite material of elemental sulphur, consisting of monatomic chains stabilized in the constraining volume of a carbon nanotube. This one-dimensional phase is confirmed by high-resolution transmission electron microscopy and synchrotron X-ray diffraction. Interestingly, these one-dimensional sulphur chains exhibit long domain sizes of up to 160 nm and high thermal stability (∼800 K). Synchrotron X-ray diffraction shows a sharp structural transition of the one-dimensional sulphur occurring at ∼450-650 K. Our observations, and corresponding electronic structure and quantum transport calculations, indicate the conducting character of the one-dimensional sulphur chains under ambient pressure. This is in stark contrast to bulk sulphur that needs ultrahigh pressures exceeding ∼90 GPa to become metallic

    Design and Simulation of CNTFET by Varying the Position of Vacancy Defect in Channel

    No full text

    Carbon Nanotube FET with Asymmetrical Contacts

    No full text

    Conductance quantization in multiwalled carbon nanotubes

    No full text
    We present results of carbon nanotube conductance measurements. The experiments were performed using an scanning probe microscope (SPM) system where a carbon nanotube fiber is connected to the SPM tip and then lowered into a liquid mercury contact. Experiments were also performed using a modified transmission electron microscope (TEM) specimen holder supplied with piezo and micrometer positioning system. Thus the contacting process of the nanotubes with the mercury could be monitored while simultaneously recording the conductance. These measurements and observations confirm previously reported conductance quantization (Frank et al.: Science 280, 1744 (1998)) of the nanotubes while providing additional details concerning the mercury nanotube contacts.We also report conductance versus voltage characteristics of carbon nanotube
    corecore